Recomendaciones de gobernanza y cumplimiento para la inteligencia artificial en la gestión empresarial

Autores/as

DOI:

https://doi.org/10.25057/2500672X.1665

Palabras clave:

cumplimiento, gestión empresarial, inteligencia artificial, recomendaciones

Resumen

El problema de investigación de este artículo es el siguiente: ¿cuáles son los posibles problemas jurídicos relacionados con el uso de la inteligencia artificial en la gestión empresarial y cómo pueden resolverse? En este trabajo se utilizan la investigación integrada, la técnica de investigación bibliográfica y la técnica booleana. La base de datos utilizada fue Google Scholar. Los términos de búsqueda fueron “Artificial Intelligence” + “management” + “review” e “Artificial Intelligence” + “Organizations” + “review”. La justificación para limitar la búsqueda al término review radica en la extensa y cualificada bibliografía de revisiones integradas. La selección de los artículos se basó en los siguientes criterios: a) disponibilidad en código abierto; b) combinación simultánea de los términos de búsqueda; c) artículos temáticos sobre gestión empresarial; y d) cronología (posterior a 2020). Como resultado, las principales áreas para el uso de la IA en la gestión empresarial son la innovación; la gestión de la cadena de suministro; la toma de decisiones; los recursos humanos; la gestión estratégica; y la gestión de productos. Además, los posibles problemas legales a los que se puede enfrentar son la falta de responsabilidad; las decisiones sesgadas; la discriminación; el incumplimiento de la alfabetización digital; la violación de la privacidad; y las decisiones injustas. Por último, las aportaciones originales de este trabajo son 12 recomendaciones de gobernanza y 8 de cumplimiento.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Sthéfano Divino, Federal University of Lavras

Doctor y magíster en derecho privado por la Universidad Pontificia Iglesia Católica de Minas Gerais y profesor asistente de derecho civil en la Universidad Federal de Lavras. Fue profesor de cursos de derecho, administración y contabilidad. del Centro Universitario Lavras. Es coordinador del Centro de Estudios en Derecho Privado, Innovación y Tecnología.

Referencias bibliográficas

Abbott, R., & Rothman, E. (2023). Disrupting creativity: Copyright law in the age of generative artificial intelligence. Florida Law Review, 75(6), 1141. https://www.floridalawreview.com/article/91299-disrupting-creativity-copyright-law-in-the-age-of-generative-artificial-intelligence

Al Mansoori, S., Salloum, S. A., & Shaalan, K. (2020). The impact of artificial intelligence and information technologies on the efficiency of knowledge management at modern organizations: a systematic review. In M. Al-Emran, K. Shaalan, & A. E. Hassanien (eds.), Recent advances in intelligent systems and smart applications (pp. 163-182). Springer.

Aksnes, D. W., Langfeldt, L., & Wouters, P. (2019). Citations, citation indicators, and research quality: An overview of basic concepts and theories. Sage Open, 9(1), 2158244019829575. https://doi.org/10.1177/2158244019829575

Bankins, S., Ocampo, A. C., Marrone, M., Restubog, S. L. D., & Woo, S. E. (2024). A multilevel review of artificial intelligence in organizations: Implications for organizational behavior research and practice. Journal of Organizational Behavior, 45(2), 159-182. https://doi.org/10.1002/job.2735

Bouschery, S. G., Blazevic, V., & Piller, F. T. (2023). Augmenting human innovation teams with artificial intelligence: Exploring transformer‐based language models. Journal of Product Innovation Management, 40(2), 139-153. https://doi.org/10.1111/jpim.12656

Brock, J. K. U., & Von Wangenheim, F. (2019). Demystifying AI: What digital transformation leaders can teach you about realistic artificial intelligence. California Management Review, 61(4), 110-134. https://doi.org/10.1177/1536504219865226

Busuioc, M. (2021). Accountable artificial intelligence: Holding algorithms to account. Public Administration Review, 81(5), 825-836. https://doi.org/10.1111/puar.13293

Carrillo-Mondéjar, J., Martínez, J. L., & Suarez-Tangil, G. (2020). Characterizing Linux-based malware: Findings and recent trends. Future Generation Computer Systems, 110, 267-281. https://doi.org/10.1016/j.future.2020.04.031

Chuan, C. H., Tsai, W. H. S., & Yang, J. (2023). Artificial Intelligence, Advertising, and Society. Advertising & Society Quarterly, 24(3). https://dx.doi.org/10.1353/asr.2023.a911198

Elgammal, A., Liu, B., Elhoseiny, M., & Mazzone, M. (2017). Can: Creative adversarial networks, generating" art" by learning about styles and deviating from style norms. International Conference on ComputationalCreativity (ICCC), Atlanta, GA, June 20th-June 22nd, 2017. https://ar5iv.labs.arxiv.org/html/1706.07068.

Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses. The FASEB Journal, 22(2), 338-342. https://doi.org/10.1096/fj.07-9492LSF

Felzmann, H., Fosch-Villaronga, E., Lutz, C., & Tamò-Larrieux, A. (2020). Towards transparency by design for artificial intelligence. Science and Engineering Ethics, 26(6), 3333-3361. https://doi.org/10.1007/s11948-020-00276-4

Ferrara, E. (2023). Fairness and bias in artificial intelligence: A brief survey of sources, impacts, and mitigation strategies. Sci, 6(1), 3. https://doi.org/10.3390/sci6010003

Furman, J., & Seamans, R. (2019). AI and the Economy. Innovation policy and the economy, 19(1), 161-191. https://www.journals.uchicago.edu/doi/10.1086/699936

Gama, F., & Magistretti, S. (2023). Artificial intelligence in innovation management: A review of innovation capabilities and a taxonomy of AI applications. Journal of Product Innovation Management, 1-36. https://doi.org/10.1111/jpim.12698

Ganesh, A. D., & Kalpana, P. (2022). Future of artificial intelligence and its influence on supply chain risk management–A systematic review. Computers & Industrial Engineering, 169, 108206. https://doi.org/10.1016/j.cie.2022.108206

García‐Pérez, M. A. (2010). Accuracy and completeness of publication and citation records in the Web of Science, PsycINFO, and Google Scholar: A case study for the computation of h indices in Psychology. Journal of the American society for information science and technology, 61(10), 2070-2085. https://doi.org/10.1002/asi.21372

Gélinas, D., Sadreddin, A., & Vahidov, R. (2022). Artificial intelligence in human resources management: A review and research agenda. Pacific Asia Journal of the Association for Information Systems, 14(6), 1. https://aisel.aisnet.org/pajais/vol14/iss6/1/

Gerlick, J. A., & Liozu, S. M. (2020). Ethical and legal considerations of artificial intelligence and algorithmic decision-making in personalized pricing. Journal of Revenue and Pricing Management, 19, 85-98. https://doi.org/10.1057/s41272-019-00225-2

Gilster, P. (1997). Digital literacy. Wiley Computer Pub.

Greco, C. M., & Tagarelli, A. (2023). Bringing order into the realm of Transformer-based language models for artificial intelligence and law. Artificial Intelligence and Law, 1-148. https://doi.org/10.48550/arXiv.2308.05502

Grover, P., Kar, A. K., & Dwivedi, Y. K. (2022). Understanding artificial intelligence adoption in operations management: insights from the review of academic literature and social media discussions. Annals of Operations Research, 308(1), 177-213. https://doi.org/10.1007/s10479-020-03683-9

Hacker, P. (2018). Teaching fairness to artificial intelligence: existing and novel strategies against algorithmic discrimination under EU law. Common Market Law Review, 55(4), 1143-1185. https://doi.org/10.54648/cola2018095

Haddaway, N. R., Collins, A. M., Coughlin, D., & Kirk, S. (2015). The role of Google Scholar in evidence reviews and its applicability to grey literature searching. PloS one, 10(9), e0138237. https://doi.org/10.1371/journal.pone.0138237

Haefner, N., Wincent, J., Parida, V., & Gassmann, O. (2021). Artificial intelligence and innovation management: A review, framework, and research agenda✰. Technological Forecasting and Social Change, 162, 120392. https://doi.org/10.1016/j.techfore.2020.120392

Higgins, J. P., & Green, S. (2008). Cochrane handbook for systematic reviews of interventions version 5.0. 1. The Cochrane Collaboration.

Heinrichs, B. (2022). Discrimination in the age of artificial intelligence. AI & Society, 37(1), 143-154. https://doi.org/10.1007/s00146-021-01192-2

Hughes, C., Robert, L., Frady, K., & Arroyos, A. (2019). Artificial intelligence, employee engagement, fairness, and job outcomes. In Managing technology and middle-and low-skilled employees (pp. 61-68). Emerald Publishing Limited.

Johansen, N., & Quon, G. (2019). scAlign: a tool for alignment, integration, and rare cell identification from scRNA-seq data. Genome biology, 20(1), 166. https://doi.org/10.1186/s13059-019-1766-4

Kaaniche, N., Laurent, M., & Belguith, S. (2020). Privacy enhancing technologies for solving the privacy-personalization paradox: Taxonomy and survey. Journal of Network and Computer Applications, 171, 102807. https://doi.org/10.1016/j.jnca.2020.102807

Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15-25. https://doi.org/10.1016/j.bushor.2018.08.004

Katyal, S. K. (2019). Private accountability in the age of artificial intelligence. UCLA Law Review, 66(54), 55-141. https://www.uclalawreview.org/private-accountability-age-algorithm/

Keding, C. (2021). Understanding the interplay of artificial intelligence and strategic management: four decades of research in review. Management Review Quarterly, 71(1), 91-134. https://doi.org/10.1007/s11301-020-00181-x

Krishnamoorthi, S., & Raphael, B. (2022). A review of methodologies for performance evaluation of automated construction processes. Built Environment Project and Asset Management, 12(5), 719-737. https://doi.org/10.1108/BEPAM-03-2021-0059

Lee, M. C., Scheepers, H., Lui, A. K., & Ngai, E. W. (2023). The implementation of artificial intelligence in organizations: A systematic literature review. Information & Management, 60(5), 103816. https://doi.org/10.1016/j.im.2023.103816

Moussa, M. (2015). Monitoring employee behavior through the use of technology and issues of employee privacy in America. Sage Open, 5(2), 2158244015580168. https://doi.org/10.1177/2158244015580168

Namatherdhala, B., Mazher, N., & Sriram, G. K. (2022). Artificial Intelligence in Product Management: Systematic review. International Research Journal of Modernization in Engineering Technology and Science, 4(7), 2914-2917.

Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M. E., ... & Staab, S. (2020). Bias in data‐driven artificial intelligence systems—An introductory survey. Wires Data Mining and Knowledge Discovery, 10(3), e1356. https://doi.org/10.1002/widm.1356

Pagallo, U. (2018). Vital, Sophia, and Co.—The quest for the legal personhood of robots. Information, 9(9), 230. https://doi.org/10.3390/info9090230

Patel, A., Kethavath, A., Kushwaha, N. L., Naorem, A., Jagadale, M., Sheetal, K. R., & Renjith, P. S. (2023). Review of artificial intelligence and internet of things technologies in land and water management research during 1991–2021: A bibliometric analysis. Engineering Applications of Artificial Intelligence, 123, 106335. https://doi.org/10.1016/j.engappai.2023.106335

Pereira, C., & Ferreira, C. (2015). Identificação de Práticas e Recursos de Gestão do Valor das TI no COBIT 5/Identification of IT Value Management Practices and Resources in COBIT 5. Revista Ibérica de Sistemas e Tecnologias de Informação, (15), 17.

Pietronudo, M. C., Croidieu, G., & Schiavone, F. (2022). A solution looking for problems? A systematic literature review of the rationalizing influence of artificial intelligence on decision-making in innovation management. Technological Forecasting and Social Change, 182, 121828. https://doi.org/10.1016/j.techfore.2022.121828

Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation–augmentation paradox. Academy of Management Review, 46(1), 192-210. https://doi.org/10.5465/amr.2018.0072

Rajagopal, V., Venkatesan, S. P., & Goh, M. (2017). Decision-making models for supply chain risk mitigation: A review. Computers & Industrial Engineering, 113, 646-682. https://doi.org/10.1016/j.cie.2017.09.043

Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson.

Sampson, M., McGowan, J., Cogo, E., Grimshaw, J., Moher, D., & Lefebvre, C. (2009). An evidence-based practice guideline for the peer review of electronic search strategies. Journal of Clinical Epidemiology, 62(9), 944-952. https://www.jclinepi.com/article/S0895-4356(08)00320-X/fulltext

Santos Divino, S. B. (2021). Inteligência Artificial como sujeito de direito: construção e teorização crítica sobre pessoalidade e subjetivação. Revista de Bioética y Derecho, (52), 237-252. https://doi.org/10.1344/rbd2021.52.31503

Sbai, O., Elhoseiny, M., Bordes, A., LeCun, Y., & Couprie, C. (2018). DeSIGN: Design inspiration from generative networks. In L. Leal-Taixé, & S. Roth (eds.), Proceedings of the European Conference on Computer Vision (ECCV) Workshops (pp. 37-44). Springer.

Schmidt, P., Biessmann, F., & Teubner, T. (2020). Transparency and trust in artificial intelligence systems. Journal of Decision Systems, 29(4), 260-278. https://doi.org/10.1080/12460125.2020.1819094

Seele, P., Dierksmeier, C., Hofstetter, R., & Schultz, M. D. (2021). Mapping the ethicality of algorithmic pricing: A review of dynamic and personalized pricing. Journal of Business Ethics, 170, 697-719. https://doi.org/10.1007/s10551-019-04371-w

Taboada, I., Daneshpajouh, A., Toledo, N., & de Vass, T. (2023). Artificial Intelligence Enabled Project Management: A Systematic Literature Review. Applied Sciences, 13(8), 5014. https://doi.org/10.3390/app13085014

Tshitoyan, V., Dagdelen, J., Weston, L., Dunn, A., Rong, Z., Kononova, O., Person, K. A., Ceder, G., & Jain, A. (2019). Unsupervised word embeddings capture latent knowledge from materials science literature. Nature, 571(7763), 95-98. https://doi.org/10.1038/s41586-019-1335-8

Toorajipour, R., Sohrabpour, V., Nazarpour, A., Oghazi, P., & Fischl, M. (2021). Artificial intelligence in supply chain management: A systematic literature review. Journal of Business Research, 122, 502-517. https://doi.org/10.1016/j.jbusres.2020.09.009

Veiga, R., & Cadete Pires, C. M. P. (2018). Impacto da inteligência artificial nos locais de trabalho. Rede de Investigação sobre Condições de Trabalho, 67-79.

Von Krogh, G. (2018). Artificial intelligence in organizations: New opportunities for phenomenon-based theorizing. Academy of Management Discoveries, 4(4), 404-409. https://doi.org/10.5465/amd.2018.0084

Votto, A. M., Valecha, R., Najafirad, P., & Rao, H. R. (2021). Artificial intelligence in tactical human resource management: A systematic literature review. International Journal of Information Management Data Insights, 1(2), 100047. https://doi.org/10.1016/j.jjimei.2021.100047

Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2021). Artificial intelligence, robotics, advanced technologies and human resource management: a systematic review. The International Journal of Human Resource Management, 33(6), 1237-1266. https://doi.org/10.1080/09585192.2020.1871398

Zarsky, T. Z. (2014). Understanding discrimination in the scored society. Washington Law Review, 89(4), 1375.

Publicado

2024-11-19

Cómo citar

Divino, S. (2024). Recomendaciones de gobernanza y cumplimiento para la inteligencia artificial en la gestión empresarial. Nuevo Derecho, 20(35), 1–17. https://doi.org/10.25057/2500672X.1665